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Zero Temperature Magnetization of a 
One-Dimensional Spin Glass 
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We calculate the zero temperature magnetization m of a one-dimensional Ising 
spin glass is a weak magnetic field h. We show that m ~  Ch x and give closed 
expressions for the constant C and the exponent x which both depend on the 
probability distribution of nearest-neighbor interactions. 
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1. INTRODUCTION 

The existence of a spin glass phase in the real world (three dimensions) has 
been for many years a very controversial subject and it is not yet 
established whether three-dimensional spin glasses exhibit a phase trans- 
ition at zero or at finite temperature. 

In the case of one-dimensional spin glasses (and probably also in two 
dimensions), the situation is much simpler because the phase transition 
occurs at zero temperature. It is then interesting to know the critical 
behavior which characterizes this zero temperature transition. In two 
dimensions, the problem seems too difficult to avoid numerical 
methods. ~1'3~ On the other hand, in one dimension the problem is simple 
enough to allow analytic calculations at zero temperature. 

The Hamiltonian of a one-dimensional Ising spin glass can be written 
as 
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1 Service de Physique Th6orique, CEN-Saclay, 91191 Gif sur Yvette, Cedex, France. 
2Service de Physique Th6orique, CEN-Saclay, 91191 Gif sur Yvette, Cedex, France and 

Department of Physics, The Weizmann Institute of Science, Israel. 

367 

0022-4715/85/0500-0367504.50/0 �9 1985 Plenum Publishing Corporation 



368 Gardner and Derrida 

where the (7 i are Ising spins (a ;=  +__1) and the interactions Ji, i + l  are 
independent random variables distributed according to a given probability 
distribution P( Ji, i + 1). 

Several authors have already considered the problem of calculating the 
zero temperature properties of such a chain for special distribution p(4-7). 
in particular when p ( J o )  is a mixture of ferromagnetic and antiferro- 
magnetic bonds of equal strengths [p(J,j) = (1 - x )  6 ( J  o -  J )  + x 3 ( J g  + J)] ,  
the ground state energy, entropy, and magnetization can be calculated 
exactly (4-6) for any value of the magnetic field h. One can also obtain exact 
results for other one-dimensional disordered models like ferromagnetic 
Ising chains in a random magnetic field (8) but only for special distributions 
of the random field/6'9a~ However much less is known for general dis- 
tributions p(J•)  of interactions or for general distributions of the random 
field.(n" ~2) 

Recently Chen and Ma (13) attacked the problem of a general dis- 
tribution P(J i j )  and they showed that the zero temperature magnetization is 
nonanalytic at h = 0 and has the following behavior: 

m ~ ' C h  (K+ I)/(K+ 3) for h ~ 0  (2) 

where the parameter K which appears in the exponent is given by the shape 
of the probability distribution p(J i j )  at Jij = 0: 

P ( J o )  ~ A I Jijl K (3) 

Their argument is beautiful and rather simple: in a weak magnetic 
field, the magnetization is due to the flip of clusters which are delimited by 
two weak bonds: the typical distance D between two bonds weaker than 
IJo[ behaves like 

D = L "  tsol P(J i j )  ~ IJ0t (4) 

The typical magnetization at T =  0 of a cluster of length D is x/-D,v 
[Jo[ (K+ 1)/2. Therefore the typical cluster of length D delimited by two weak 
bonds flips for a value of the magnetic field h ~ IJol/x/-D i.e., h-,, IJ0l (K+ 3)/2 
The typical magnetization per spin of the chain due to the flip of these 
clusters is therefore m ,,~ D i / Z / D  ~ IJo] (K+ 1)/2 i.e., m ~ H (K+ 1)/(K + 3). Although 
this argument gives a simple and physical reason for the nonanalytic 
behavior of m at h = 0, it is not easy to take into account the fact that there 
may be flipped clusters inside flipped clusters and it does not allow one to 
calculate the constant C which appears in Eq. (2). 

The purpose of the present paper is to derive formula (2) for an 
arbitrary distribution which behaves as in Eq. (3) for J--+0 and to find the 
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expression for the constant C in terms of the distribution p. Our  final result 
will be that for small h: 

( ~ "]~K+2)/~r+3) I 4A ],/~x+3) 
m ~- h (K+ I)/(K+ 3) 

\~-Z-~_ ~/ ( K +  1 ) (K+ 3)2.] 

F((K+ 2)/(K+ 3)) 
x (x+2)  (5) 

r(1/(x+ 3)) 

where the parameters  A and K are the ones which appear  in (3), and the 
constant e is defined by 

fo ' P ( J i j )  d J  O. = ~ (6) 

So ~ is the density of ferromagnetic bonds. The technique used to obtain 
this result is based on transfer matrix ideas. 

2. A F O R M U L A T I O N  V A L I D  FOR A N Y  FIELD h 

The idea of our calculation is very similar to the one which was used 
for the + J  case. (3) One writes a recursion relation for the ground state 
energy. The Hamiltonian Jgc+l of a chain of L + 1 spins can be decom- 
posed into the Hamiltonian a f  L of a chain of L spins plus the part  of ~ + 
which contains the spin o-L+ ~ 

~L+I:--~L--JL, L + l f f L f f L +  1 - -  h a L + l  (7) 

Let us denote by - F c the ground state energy of the chain of L spins if the 
spin ~rL= +1 and --GL this ground state energy if a L =  -1 .  Clearly one 
has 

FL + t = h + max(FL + J c , c  + ~ ; GL  --  JL,L + 1 ) (8) 

GL + ~ = - h  + m ax(F r  - Jr ,L  + a ; G c  + J c , c  + 1) (9) 

These recursion relations express the fact that to find the ground state 
energy of ~(FL + 1, one has to find the value of aL which minimizes ovgr+ 1- 

F L and GL increase with L but their difference remains finite. If we 
define C c  by 

2CL = GL -- FL (10) 

then Eqs. (8) and (9) give 

CL + ~ = CL -- h + max( - CL -- JLL + ~ ; 0) -- max(C  L --  JL,  r + 1 ; O) (11 ) 
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One has always 

ICL+I] ~<h+ IJL,L+ 1 [ (12) 

and so CL does not increase with L. 
For  large L, CL has a stationary probability distribution P(c) which 

satisfies 

P(c) = f p(J) dJ f P(c')  de' 6(c - c' + h - max( - c'--  J; O) 

+ max(c' - J; 0)) (13) 

This integral equation can be rewritten as 

f - ,c ,  f ~  P(c') dc' P ( c - h ) = p ( - c )  -o~ P(c ' )dc '  +p(c )  cl 

f ~ f ~c' 
+ P(c) p ( J ) d J + P ( - c )  o(J)dg (14) 

Icl - o e  

It is not difficult to obtain (14) from (13); one way of doing it is to break 
the integral over J into two parts: one from - oo to 0 and the other from 0 
to + oo. By considering the different cases, one gets (14). 

If one is able to find the distribution P(c) which solves the integral 
equation (14), then the ground state energy - E  would be known in the 
thermodynamic limit: 

E = lim FL lim GL lLifn F L -4- G L 
L~c:~-Z=L~ov- -Z  = 2L 

1 
= -  lira <FL+I+GL+I--FL--GL> (15) 

2 L ~  

where in (15) the average means an average over JL,L+I and over CL. 
Since from (8), (9), and (10), we have 

EL + 1 + GL + ~ -- FL -- GL = 2JL, L + ~ + max(0; 2CL -- 2JL, L + 1) 

+ max( - -2CL--  2Jr,L+ 1; 0) (16) 

Therefore 

E =  JR(S) ag + p(J) dJ P ( c ) ( c -  J) d~ 
- - o o  - - o o  

+ p(g) dg P(~)( - c - J) dc 
- - o o  - - o o  

(17) 
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For any distribution p(J) and for any value of h, the ground state energy is 
given by (17) is one knows how to solve (14). Then the magnetization m 
can be obtained by taking the derivative of E with respect to h. One knows 
the solution of (14) only for special distributions like, for example, the + J  
case. (3) We are going to see in the next section that in the limit h,~ 1, one 
can solve the integral equation (14) for any distribution of the Js. 

3. THE L IMIT  OF A W E A K  M A G N E T I C  FIELD 

In a weak magnetic field, the integral equation (14) leads to a differen- 
tial equation which can be solved. 

Without any approximation, one can replace (14) by 

P(c - h) - ~P(c) - (1 -- ~) P(--c)  

fl~ f Icl P(c') de' + p ( - c )  P(c') de' = p ( c )  ,.~ - ~  

- P ( c )  ~ l~ ' lp(J)dJ-P(-c)  f ~ p(J) dJ (18) 
"0 - Icl 

where ~ is defined by formula (6). 
For h = 0, the number of solutions of this equation depends on the 

support of p(J). There is always the solution P(c) = 6(c). But if there is a 
minimal value JJlmin of IJ], i.e., 0 does not belong to the support of p(J) 
any symmetric [P (c )=P( -c ) ]  distribution P(c) whose support is in 
]-[Jlmin,  IJImin[ is a solution of (18). If we limit ourselves to the case of 
distributions which have the behavior (3), then I J l m i n  = 0 for h = 0 

P(c)=6(c) (19) 

We are now going to see that the distribution P(c) which depends on 
h and c takes in the limit h ~ 0 a scaling form 

P(c) + P ( - c ) ~ h  2/(K+ 3);t(h-2/(K+ 3)C) (20) 

To show that (20) is valid in the limit h ~ 0, we shall use a self-consistent 
argument: assuming that (20) is valid, we shall simplify Eq. (18). Then we 
shall solve the simplified equation and show that it agrees with (20). 

The form (20) means that P(c) is concentrated in a region of size 
h 2/(K+3) around 0, In this region, one can replace p(c) by its asymptotic 
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form (3) and one can expand P ( c - h )  in powers of h since Z will have a 
small variation between c and c -  h. So for h small, one can replace (18) by 

h 2 
(1 - ~ ) [ P ( c )  - P ( - c ) ]  - hE'(c) + E  P"(c) 

fl ~ Icl K+I =Alcl  K [ P ( c ' ) + P ( - c ' ) ] d c ' - - [ P ( c ) + P ( - c ) ] A - ~ - ~  (21) 
cl 

This approximate integral equation is the one that we shall consider in the 
following. If we define Q(c) and R(c) by 

Q(c) = P(c) + P ( -  c) (22) 

R(c) = P(c) - P ( -  c) (23) 

then (21) can be decomposed into 

h i ' ( c ) + - s  ]el K Q(c')dc' -~-1-  Q(c) (24) 
2 ct 

h 2 
2(1 - c~) R(c) - hQ'(c) +-~ R"(c) = 0 (25) 

In fact using (20) and (22), one sees that in (25) the term which contains 
R" is small compared with R(c) and therefore (25) can be simplified into 

2(1 - ~) R(c) - hQ'(c) = 0 (26) 

Then since R(c) can be calculated in terms of Q(c), (24) can be trans- 
formed into an equation for Q(c): 

1 - ~  4 Q"(c)=A cl K Q(c')dc' Q(c (27) 
~l K +  1 

Since Q(c) is even, it is sufficient to study this equation for c > 0. One can 
now transform this integral equation (27) into a differential equation. If we 
define H(c) by 

H(c) = Q(c') dc' (28) 

Then (27) becomes 

�9 cK+ I 1 s m':A [cK/J+T;5.' 1 - ~ 4 ( 2 9 )  
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Because Q(c) is a probability distribution, H(c), H'(c), H"(c) have to 
vanish when c ~ oe. This allows us to integrate (29) and find that 

h 2 cK+ 1 
- - - - H " = A  H (30) 
1- -~  4 K + I  

This means that if one knowns the solution O(x) which decreases at x ~ oc 
of the following equation: 

d2~l = X K +  10(X ) (31) 
d x  2 

Then the function H(c) will be 

H(c) = ~9(2c)/~(0) (32) 

where 2 is given by 

)~ ( 4A 1 - 7  1)1/~x+3) 
= \K+- i  ~ - -  h- 2./ (33) 

and the r in the denominator of (32) is just there to normalize H. 
So we see that if we can solve (31), then since H(c) has the form (32), 

then Q(c) will have the form (20) that we had assumed. Therefore, the 
assumption (20) was correct since one can find a P(c) which solves the 
integral equation. We shall see in the Appendix what can be said about 
Eq. (31). 

Let us now see what must be known about the function $(x)  in order 
to calculate the ground state energy. The ground state energy given in (17) 
can be transformed into 

;_c ] 
-- (c + J) p(J)  dJ 

O:3 

dJ 

(34) 

which can be rewritten as 

E= f_+~ fdl p(])dJ+ f+_f P(c) de [fo (c-J) p(J)dJ 

- foC (C + J) p(J) dJ] (35) 
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This expression is completely exact. Now, using the fact that P(c) is con- 
centrated in a narrow region around 0 and that p(J) c a n  be replaced in this 
region by (3), one can write for small h 

f fo +~ 2A cK+2 E~- -o~ IJIP(J) dJ-~ ( K + I ) ( K + 2 )  Q(c)dc (36) 

After an integration by parts, one gets 

I +~176 ~-v,2A fo~ E= [Jlp(J)dJ+--y--~, ~ cK+lH(c)dc (37) 
--oo 

Using now the form (32) of H, one sees that 

I+ ~ 2A E= [Jlp(J) dJ+~-~2-(K+2)#K (38) 
--oo 

where #K is a number defined by 

x 'O(x) 
/ ~  = @(0) (39) 

In the Appendix we shall show how one can calculate #~. The result will be 
that 

#K= ( K +  3) CK+ ,)/(K+ 3) F((K+ 2)/(K + 3)) (40) 
r(1/(K+ 3)) 

Therefore using (33), (38), and (40), one gets 

[ A ]1/(K+3)( O~ h2~ (K+2)/(K+3) 
E = j  f [Jlp(J)dJ+2 [_-~-~j \~-~_ -~] 

X (K--~- 3)  (K+ 1)/(K+ 3) F ( ( K +  2) / (K+ 3)) (41) 
r(1/(K+ 3)) 

Then the magnetization can be obtained from 

8E 
m = - -  ( 4 2 )  

Oh 

and one finds formula (5). 
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4. CONCLUSION 

It is interesting to compare the prediction of formula (5) with other 
known results. First if one takes blindly the limit K ~ or, one finds that 

m ~ - h - -  (43) 

This result was already found in the _+J case. (6) It should probably hold for 
any distribution of Jo whose support does not contain 0. 

Second we can compare our result (5) with the numerical calculation 
of Chen and Ma, O3) who determined the constant C numerically (One 
should be careful in comparing their result with ours since they have a fac- 
tor 2 in their Hamiltonian). If one takes their best fit with our definition of 
h, they claim that 

m ~_ 0 .74(Ah)  1/3 (44) 

whereas our formula (5) gives 

22/3 [F(2/3)]2 (Ah )1/2,',-,0.7714887 " " " (Ah ) 1/r3 (45) 
rn 31/6 

Since they have only considered 12 samples of 104 spins, one can say that 
the agreement is completely satisfactory. 

We have also done a numerical calculation for a chain of 106 spins 
with P ( J o ) =  1/2 for [J,~l < 1 and we found 

for h = 10-4 m/h 1/3 = 0.760 + 0.017 

for h = 4 x 10 -4 m/h '/3 = 0.792 + 0.013 

So again the agreement seems rather good. 
Haim Sompolinsky informed us that by an approach similar to the 

one described in the present paper, he was able to generalize our results to 
the low-temperature case. (a4) 

Lastly, it is interesting to notice that the fact that the exponents 
depend on the shape of the distribution P(Jo) has also been observed 
numerically in higher dimension. (15) 
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A P P E N D I X  

In this Appendix, we study the solution of the differential equation 
(31) and we calculate the constant #K defined by (39). 

The differential equation 

d2~ = x ~+ ~0 (A1) 
dx 2 

has in general two independent solutions. Because ~ has to decrease for 
x ~ 0% we have to choose the one which decreases. 

It is possible to express this solution in terms of Bessel functions: 

[ 2 (K+ 
lit(x) -~- ~ KU(K+ 3) ~ K - ' ~  x 3)/2) (A2) 

where the function K~ is a Bessel function which can be written as 

Kv(z)=v/- ~ [(1/2)z] v f~  e-Z,(t2 - v z  
r ( v + l / 2 )  , - 1 )  ~ dt (A3) 

However one does not need to be an expert in Bessel functions to obtain 
the expression of/~x. 

Let us define Ix by 

fo I~ = x~O(x)  dx  (A4) 

Then using the differential equation, one finds that 

c~(c~- 1)I~_ 2= I~ + x + 1 (A5) 

The general solution of this equation has the following form: 

[~=(K-t- 3) 2~/(K+3) \K+ 3]r~-k-~) G 

where we have just used the fact that F ( z +  1)=zF(z). G(x)  is a priori an 
arbitrary periodic function of period 1. In the limit x ~ c~, one can solve 
equation (A1) easily: 

E 1 O ( x ) ~ x  [(K+ ~)/4] exp K +  3 x(X+ 3)/2 (A6) 
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For large e, I~ can be estimated by a saddle point method 

I~ ~ --  x ~ -  IK+ I)/4 exp  K + 3  x(K+3)/2 dx  (A7) 

and then one finds that the function G is a constant. Therefore 

(~+2'l F(~+ 1" ] I~=G(K+ 3)2=/(K+ 3) F \-~--~/ \--~-~/ (A8) 

Once one knows  the Ix, it is easy to find the constant #K using the fact that 
when c~ ~ - 1 ,  

1 )K+3 G (A9) ~'(0)-(K+3) 2/(K+3)V ~ 1+~ I~~1 +~ 

The result is of  course independent of  G 

#K = ( K +  3) (x+ ~)/(x + 3) F ( ( K +  1 ) / ( K +  3)) 
F(1/(K+ 3)) (A10) 
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